차동우 물리1 벡터 (3) 강의 중에서. $f(t+dt)$ $=f(t)$ $+\left[\frac{df}{dt}\right]_{t}dt$ $+\frac1{2!}\left[\frac{d^2f}{dt^2}\right]_{t}(dt)^2$ $+\frac1{3!}\left[\frac{d^3f}{dt^3}\right]_{t}(dt)^3$ $+\cdots$ $f(x,y)$ $df=f(x+dx,\,y+dy)-f(x,\,y)$ $=\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partial y}dy$ Linked from [[VG:테일러_다항식,Taylor_polynomial]] ---- [[다항식,polynomial]] - [[VG:다항식,polynomial]] =다항식,polynomial =,polynomial 다항식 polynomial { ||order? ||표현(ko) ||표현(en) ||'''다항식,polynomial''' ||해당 [[방정식,equation]] ||해당 [[곡선,curve]] || ||0 ||영차 ||? || || || || ||1 ||일차 =linear? ||? || || || || ||2 ||이차 ||quadratic || || || || ||3 ||삼차 ||cubic || || || || ||4 ||사차 ||quartic || || || || ||5 ||오차 ||quintic ? || || || || ||6 ||육차 ||sextic ? || || ||MathWorld:SexticCurve || ... [[https://math.stackexchange.com/questions/76533/types-of-polynomial-functions-quadratic-cubic-quartic-quintic algebra precalculus - Types of polynomial functions. Quadratic, cubic, quartic, quintic, ...,? - Mathematics Stack Exchange]] [[WpEn:Numeral_prefix]] = https://en.wikipedia.org/wiki/Numeral_prefix WtEn:polynomial WpEn:Polynomial Ndict:다항식 Libre:다항식 Namu:다항식 = https://namu.wiki/w/다항식 https://ko.wikipedia.org/wiki/다항식 https://simple.wikipedia.org/wiki/Polynomial https://en.wikipedia.org/wiki/Polynomial 한국어 번역이 -식 인데 항상 [[식,expression]]? Sub/topics [[테일러_다항식,Taylor_polynomial]] (wk다항식)"최고차항의 계수가 1인 일변수 다항식을 일계수 다항식(또는 모닉 다항식)이라고 한다." monic polynomial https://ko.wikipedia.org/wiki/일계수_다항식 https://en.wikipedia.org/wiki/Monic_polynomial https://ko.wikipedia.org/wiki/다항식의_나머지_정리 WpSp:Polynomial_remainder_theorem = https://simple.wikipedia.org/wiki/Polynomial_remainder_theorem https://en.wikipedia.org/wiki/Polynomial_remainder_theorem polynomial_ring { WpEn:Polynomial_ring = https://en.wikipedia.org/wiki/Polynomial_ring } Rel [[계수,coefficient]] [[가중합,weighted_sum]]? =가중합,weighted_sum =,weighted_sum . weighted_sum [[가중값,weight]](VG) [[합,sum]] WtEn:weighted_sum Ndict:가중합 Ndict:"weighted sum" Ggl:"weighted sum" [[기저,basis]] 다항함수 polynomial function polynomial_function - [[다항함수,polynomial_function]] - 다항함수,polynomial_function - vg에는 페이지는 있으나 내용은 아직 안옮김(at [[Date(2023-08-16T03:46:39)]]) }