사인 함수 미분 증명 = Theorem = $\frac{d}{dx}\sin x=\cos x$ = Proof 1 = Let $f(x)=\sin x$ $f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$ $=\lim_{h\to 0}\frac{\sin(x+h)-\sin x}{h}$ $=\lim_{h\to 0}\frac{\sin x\cdot\cos h+\cos x\cdot\sin h-\sin x}{h}$ $=\lim_{h\to 0}\left(\sin x\cdot\frac{\cos h-1}{h}+\cos x\cdot\frac{\sin h}{h}\right)$ $=\sin x\cdot\lim_{h\to 0}\frac{\cos h-1}{h}+\cos x\cdot\lim_{h\to 0}\frac{\sin h}{h}$ 좌측에 [[VG:로피탈_정리,L_Hopital_s_rule]]를 쓰면 $=\sin x\cdot 0+\cos x\cdot 1$ $=\cos x$ i.e. $\frac{\sin(x+h)-\sin x}{h}$ $=\frac{\sin x\cos h+\cos x\sin h-\sin x}{h}$ $=\sin x\left(\frac{\cos h-1}{h}\right)+\cos x\left(\frac{\sin h}{h}\right)$ $h\to 0$ 일 때의 극한을 구하면 $=\sin x \cdot 0 + \cos x \cdot 1$ $=\cos x$ = Proof 2 = Let $f(x)=\sin x$ $\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$ $=\lim_{h\to 0}\frac{\sin(x+h)-\sin x}{h}$ [[VG:삼각함수,trigonometric_function#s-8.2]] 합·차 → 곱 공식을 쓰면, $=\lim_{h\to 0}\left(2\cos\frac{x+h+x}{2}\cdot\sin\frac{x+h-x}{2}\right)/h$ $=\lim_{h\to 0}\left(2\cos\frac{2x+h}{2}\cdot\sin\frac{h}{2}\right)/h$ $=\lim_{h\to 0}\frac{2\cos\left(x+\frac{h}{2}\right)\cdot\sin\frac{h}{2}}{h}$ $=\lim_{h\to 0}\frac{\cos\left(x+\frac{h}{2}\right)\cdot\sin\frac{h}{2}}{\frac{h}{2}}$ $=\cos(x+0)\cdot 1$ $=\cos x$ ---- from [[VG:삼각함수_미분표]] Up: [[여러가지증명]]